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Crystal vibrations and the classical theory: 

The assumption will be made to consider that the mean 

equilibrium position R


 of each ion is at a Bravais lattice site. 

The ions oscillate about this mean position. Thus the 

instantaneous position of the ion )(Rr


 will deviate from its 

mean position by the displacement )(Ru


, as shown in figure 

59. This means that  

  )()( RuRRr


 . 

 

Figure 59: The instantaneous position of an ion is defined in 

terms of its mean position (the Bravais lattice vector) R


 and 

the ionic displacement )(Ru


. 

 

The static lattice model as compared to the dynamic model: 

As mentioned before that the pair of atoms in noble gases, 

for example, separated by r


contributes a potential energy 

)(rU


to the total potential energy of the whole crystal where 

the assumption is made that these atoms are fixed at their 

Bravais lattice sites (with zero kinetic energies). The total 

potential energy is the sum of all potential energies of the 

pairs of atoms and has the expression: 
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Now if our assumption is changed such that allowing the 

atoms to oscillate about their mean positions, the above 

relation must be modified and written as: 

 





RRRR

RuRuRRURrRrUU



))()((

2

1
))()((

2

1

. 

However, the new expression of the total potential energy 

depends on the dynamical variables )(Ru


. Therefore the 

Hamiltonian of the system is expressed as: 

 
R

U
M

RP
H





2

)( 2

,  

where )(RP


is the momentum of the atom whose equilibrium 

position is R


and its atomic mass is M. 

 

The harmonic Approximation: 

This approximation is based on the concept that the atoms 

will have very small deviations )(Ru


from their mean 

positions R


.  In such circumstances the total potential energy 

may be expanded using the Taylor's theorem, that is, 

)(.....)().(
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

Put RRr

 , )()( RuRua


 and insert the above-

mentioned dynamical definition of the total potential energy 

we may get: 
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The first term is the potential energy at equilibrium and can 

be given the expression: 


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The second term represents the linear term which has the 

coefficient 
R

RRU



)( . This coefficient gives us the net 

force on any atom in equilibrium. Thus this term must vanish 

because the net force on any atom in such conditions is 

zero. 

All higher order terms can be taken as corrections to Ueq. The 

most important term among such high order terms is the 

quadratic term Uquad (or called Uharm), namely, 
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Note: 

 In several dynamical applications the constant 

term U
eq can be neglected because it is 

independent of theu


's and P


's and the total 

potential energy turns out to be the quadratic 

term only. 

 Further corrections to the total potential energy 

may be considered. Such corrections are like the 

third and fourth order terms and they are called 

the anharmonic terms. Those are treated as 

small perturbations on the dominant harmonic 

term. 

Vibrations of crystals with monatomic basis in one-

dimension: 

In order to study the elastic vibrations of a crystal when one 

atom in the primitive cell is considered, we need to know the 

direction by which the elastic wave may propagate along. 

The propagation of such wave causes the entire planes of 

atoms to move in phase with two displacements: 

a. Either one is parallel to the direction of wave vector k


 

(called longitudinal vector). 

b. Or the other is perpendicular to the direction of wave 

vector k


(called transverse vector) 

 

However each wave vector may have three modes, one in 

longitudinal polarization and two transverse polarizations. 
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Let us take a linear array of atoms along the x-axis as an example. 

Each atom with mass M and separated by a distance x= na, where 

n is an integer. The displacement of the n
th ion along the x-axis 

from its equilibrium position is defined by u (na), as shown in figure 

60. If the assumption is made that only neighboring ions will 

interact, then harmonic approximation will be adopted where the 

quadratic term in the expanded elastic potential energy may be 

considered, namely: 

   
n

quad anunauCU 2)]}1({)([
2

1
. 

 Here it is assumed that the force on an atom in the plane of atoms 

n caused by the displacement of the plane of atoms n+1 is 

proportional to the change in displacements [u(n+1)-u(n)]. The 

elastic constant 
2

2

x

U
C




  , where U is the elastic potential energy of 

the two interacting ions separated by a distance x. 

 

Note: It must be emphasized that if only nearest-neighbor forces 

are kept, the harmonic approximation for the 1-D Bravais lattice 

describes a model in which each ion is tied to its neighbor by 

perfect springs of spring constant C. 
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The equations of motion can be simply obtained from the above 

form of elastic potential energy as: 

  ]}1({)}1({)(2[
)(

)( anuanunauC
nau

U
nauM

quad





  

Considering the normal mode of oscillations the same as a wave 

traveling on a continuous string, the displacement of the n
th atom 

may be represented by: 

  
)(),( tknaiuetnau  .  

If we are seeking solutions of such form to the above equations of 

motion, then these solutions must satisfy the equations of motion, 

i.e.: 

]2[ )}1{()}1{()()(2 tankitankitknaitknai ueueueCueM    , 

)cos1(2]2[2 kaCeeCM ikaika   , 

Figure 60: a) The displacement u(na) of an ion from 
its equilibrium position at na, at any instant. 
 
b) The harmonic approximation for 1-D Bravais 
lattice describes a model in which each ion is tied 
to its nearest-neighbor by perfect springs with 
spring constant C. 

na (n+1)a (n+2)a (n-1)a (n-2)a 

u(na) 

a) 

b) 
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M
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k

)cos1(2
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 
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M

C

M

kaC
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
 , 

(where 
2

sin21cos 2 ka
ka  ). 

Or          
2

sin
4

)( 22 ka

M

C
k  . 

This is the dispersion relation for normal modes of a linear chain of 

atoms and it is depicted in figure 61.  

 

The boundary of the first Brillioun Zone: 

The boundary of the first Brillouin zone can be checked out as 

follows: The first derivative with respect to k of the last relation is 

zero, i.e. 0
2


dk

d
. Since ka

M

Ca

dk

d
sin

22




 sin ka= 0 at 
a

k


 . 

 

Figure 61: The dispersion plot for a monatomic 
linear chain with only nearest-neighbor interactions. 
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Two extreme limits of  or wavelength: 

i) For very small values of k (or very long 

wavelengths), i.e. ka<< 1, cos ka can be 

expanded such that
2)(

2

1
1cos kaka  . Thus (k) 

min and the dispersion relation 

give ka
M

C
2

1

min )( .  

Conclusion:  

The elastic (or sound) waves have frequencies that are 

directly proportional to k in this region of the dispersion 

curve. The slope of this linear relation gives us the velocity of 

sound, namely: a
M

C
vsound

2
1

)( . Some physics might be 

extracted from this, if we define the linear mass density (or 

mass per unit length) of the chain of atoms as
a

M
 , then Ca 

may represent the tension of the chain T. This will obviously 

give us a physical picture similar to the problem of a wave 

traveling in a string where the velocity of wave is written as 

2
1

)(


T
v  . Thus the frequency  in our real problem can be 

expressed as kvsound , as shown in figure62. 

ii) When large values of k are considered (k) 

max at 
a

k


 , and 2
1

max )
4

(
M

C
 . 
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Remark: There are no normal modes that can have angular 

frequency greater than max . 

Limitations on the wave vector k within the first Brillouin 

zone): 

Since the dispersion curve is periodic in k in intervals of 2/a, 

atomic displacements are the same for normal modes. This 

means that the most convenient way to specify the boundary 

conditions is to join the two remote ends of the chain back 

together by one more of the same springs that connect 

internal atoms as shown in figure 63. If we take the atoms to 

occupy sites a, 2a, Na, where N represents the total number 

of atoms, then we can solve the equation of motion N times 

(where n= 1, 2, N) provided that the boundary conditions are: 

u (a) = u ([N+1]), 

and u (Na) = u (0).  

Figure 62: The linear part of the dispersion plot at 
very small values of k for a monatomic linear chain 
with only nearest-neighbor interactions. 

k 

(k) 
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This requires that 1ikNae  which may also require that 

aN

n
k

2
 . This is the well-known Born-von Karman periodic 

boundary condition. 

 

Notes:  

1. Any two modes with a wave vector that differ by 2/a 

are the same and the smallest wave vector for any 

given mode is restricted to the range 
a

k
a


 . The 

maximum wave vector 
a

k


max . 

2. At the boundaries 
a

k


max of the first Brillouin zone, 

the solution u e 
i(kna - t) does not represent a traveling 

wave, but a standing wave. This means that in such a 

standing wave, alternate atoms oscillate in opposite 

phases, because un =  e
in

=  (-1)
n, where the phase 

factor e-it is ignored here. Thus un is either equal +1 or 

-1 which depends on whether n is an even integer 

(where the wave moves to the right) or odd integer 

(where the wave moves to the left). 

Figure 63: The Born-von boundary condition. A 
massless rigid rod of length L=Na connects the ion 
on the extreme right with the spring on the extreme 
left. 

L=Na 
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Standing wave and Bragg reflection of x-rays: 

When the Bragg condition is satisfied a standing wave is set 

up and no more traveling wave propagation does exist in a 

lattice. Substituting the values 
a

k


max into the Bragg law 

(2d sin = m) will give 2d sin = m(2a), where = 2a. Here the 

above condition may be satisfied when d= a, =/2 and m=1. 

Conclusion: 

Only wave lengths longer than 2a are required to represent 

the lattice motion. This occurs by having values of k within 

the first Brillouin zone (i.e. within limits 
a

k


max ). 


